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CONSERVATION LAWS AND LIAPOUNOV STABILITY
OF THE FREE ROTATION OF A RIGID BODY

John P, Vinti
M.I.T. Experimental Astronomy Laboratory, Cambridge, Massachusetts

ABSTRACT

The paper derives the well known stabilities of free ro-
tation of a rigid body about its principal axes of least and
greatest moments of inertia directly from the constancy of the
kinetic energy and of the square of the angular momentum. The
resulting proof of Liapounov stability yields new gquantitative
measures of this stability. Involving only simple algebra, it
depends on the fulfilling of a weak sufficient condition that
insures an unchanging sign of the main component of the angular
velocity w. The method cannot be used, however, to prove the
well known instability of rotation about the intermediate axis.

The quantitative results for the radii of the spheres in
w-space that occur in the Liapounov proof lead to a physical re-
sult that may be of interest., If the Earth were truly a rigid
body, rotating freely, the angular deviation of its instantaneous
polar axis from the nearest principal axis could not increase
from a given initial value by more than the factor /2.

These same quantitative results for the radii of the Lia-
pounov spheres in w-space also lead to sufficient conditions for
the rotational stability of almost spherical bodies of various
shapes, prolate or oblate. They may be pertinent in designing
"spheres" to be used in currently planned experiments to test
general relativity by observing the rate of precession of a ro-
tating sphere in orbit about the Earth,
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1. Integrals of the Motion,

Let A, B, and C be the moments of inertia of a rigid body
about its principal axes, with A<B<C, let lA'lB' and 1C denote
unit vectors attached to those axes, and let g 10y, and Wy be
the respective components of the body's angular velocity about
those axes,

Then, for free motion or for motion in a uniform gravita-
tional field, its angular momentum

L = 1AAwl+lBBw2+1CCw3 (1)

and its kinetic energy of rotation T, given by

2 2 2
Aml +Bw, +Cu)3 = 2T (2)
both taken relative to the center of mass as origin, are con-

stant. From (1) there also follows:

AZ(D 2_!_]32(D 2. .2 2

1 5 HCTwg" = Ez = const (3)
This note shows that the integrals of motion (2) and (3) guaran-
tee Liapounov stability of rotation about either of the axes 1A
or lC' without recourse to the differential equations of motion.
It also shows, however, that these integrals, alone, do not suf-
fice to prove Liapounov instability of rotation about the inter-

mediate axis lB.

2, The Cases where the Initial Angular Velocity,% is Strictly along
One of the Principal Axes.,

If one sets the time derivative of L equal to zero, one ob-
tains the usual Eulerian first-order differential equations, If
the initial %(0) is equal to any of 1Aw1(0), lez(O), or lcw3(0),
it then follows that Q(t) remains equal to this initial value,

Let us attempt to obtain these results from (2) and (3)
alone, putting



0 (0) = a g, (k=1,2,3).

First multiply (2) by A and subtract the result from (3), to
obtain

Next multiply (2) by C and subtract (3) from the result, to
obtain

2

A(C-—A)wlz + B(C-B)w,’= A(C-A)wlg + B(C—B)wzg (5)

Finally, multiply (2) by B and subtract (3) from the result,to
obtain

2 2

A(B—A)d)lz—c (C—B)u)3 = A(B—A)mlg—c (C-B)a)3o (6)
Since A<B<C, all terms in (4) and (5) are positive. Thus, from
(4), if w20=w30=0, it follows that wz(t)=w3(t)=0 for all t,
Similarly, from (5), if mlo=w20=0, it follows that wl(t)=w2(t)=0
for all t. On the other hand, if the initial rotation is about
the intermediate axis, so that wlo=w30=0, (6) does not show that
wl(t)=w3(t)=0, although the statement happens to be true.

Egs. (4) and (5) show that the graphs of W, VS. Wz oOr of Wy
vs. o, are ellipses and Eq.(6) shows that the graph of Wy vs.
w4 is a hyperbola. These facts suggest some conclusions that
are well known: with respect to small changes in the initial
conditions, the rotation is stable if it is about lA or lc, but
unstable if it is about lB(MacMillan 1966) .

3. Liapounov Stability

These conclusions about stability are old and the free
motion of a rigid body has had exhaustive treatments in the
literature, analytically with elliptic functions and geometri-
cally with Poinsot ellipsoids, poihodes, and herpolhodes, It
is of some interest, however, to demonstrate the stability
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of free rotation about lA or lC solely from the constancy of L2

and T and to show that it is of the Liapounov type (L-type).
In this way we obtain quantitative measures of the stability.
The contrast with the motion of a particle is important.
Particle motion is described by a differential system of the 6th
orde:. In that case Liapounov stability of equilibrium means
this: if the particle is displaced slightly from a point P of
equilibrium in the (metricized) six-dimensional phase space,
the phase point will always remain inside a six~-dimensional
sphere of radius € and center P whenever the initially displaced
phase point lies inside some like-centered six-sphere of radius
& = €, Examples are few, e.g., the linear oscillator and motion
about a triangular Lagrange p01nt Ly in the restricted problem
of three bodies (Pollard, 1966, Deprit and Deprit- Bartholome,
1967), 1In view of the revival of interest in L-stability by
the Lagrangian L4 result, it may be useful to show explicitly
that rotational stability is of the Liapounov type. In this
case, instead of phase space, we deal with 3-dimensional w-space,
There is then Liapounov stability of rotational equilibrium at
» = ® if there exists a 6 = ¢ such that when w, is changed by
Bwl, the resulting w(t) always satisfies ]w(t)-w |< € if
Iéw |<s.

4., Free Rotation about 1A

Since (wO,O,O) is an equilibrium point in the w-space, any
motion near it is thus L-stable if there exists a & S e such that

2 2 2_2
(ml—wo) O, "+, <e (7)
whenever
2 2 2
(@) g=wp) "+, g0, < 6

with no loss of generality, we may take a3y (0)=w =Wy =Dy since it

is only the non-vanishing of w, and w that produces any
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departure from rotation about lA alone,
2 2 2
Wygt3g < O
Now, from (4)
_Cc-A 22
Wy =Wy =g poa (P30 ~@3°)
so that
m 2oy 2 < & C-A 2
® @0 < B B-a “30
2 2 B B-A 2
< B B-a
and w3 w30 + C C-A wzo
From (5), with wloﬂwo, we find
2 2 B C-B 2 2
Do Py A ooa (@ ~®,0)
BC-B 2
<aca®
Insertion of (11) into (14) gives
2 2 _BCB, 2 CC-B 2
® "®y < acea®otaBa Yo

Then (8) becomes

(9)

(10)

(11)

(12)

(13)

(14)

(15)

This relation gives no information about the sign of Wy which

we must now consider.,
2 .

(wl—wo) will at

for €<\wo!. Let

not change sign,

Note especially th

some time exceed W and

(0]
us therefore impose the

To do so, note that if

through wl=0, in which case (15) would be
w2 <BCB, 2 CCB 2
0 A C-A 20 A B-A 30

If we now deny (16), Wy

ruled out stability. Thus
2 ,BCB, 2 _ CCB 2
®y Z A c=a ®20 * a B-a “30

at if Wy changes sign,
(7) cannot be fulfilled

condition that Wy shall

it does, it must go

come

(16)

cannot change sign and we shall not have

(17)



is a sufficient condtion for no change of sign of Wy .
To place an upper bound on (w mo) in (7), we need first

an upper bound on lmlz—w 2| To obtaln it, note first that

¢
o

) .
Dyg (18)

A
|t
)
3|

by (13). If we now insert (10) into (13), we also find

2 2

c-B o 2y
30

C
W =% (w

B-A (19)

3

C Cc-B 2
a B-a 230 (20)

From (18) and (20) it follows that lw 02\ is less than either
B(C-B) o, g S CB 2 (1)

A(C—A) and & g7 P3q and therefore less than their sum ’
so that
2 2, _BCB 2  CCB, 2
oo "~ 1< % G2 ©20 * 3 B-a ©30 (21)
Now
‘ 12"”021
lwl_wol | (22)
Wyt

Also, since Wy (0)=w =W) =0y, it follows that |w0+wll>lwoL if we
impose the suff1c1ent condition (17) that Wy does not change sign.

Then i

(wlz_woz)z
(@y-wg) ™ < 5
Lo

(23)

by (22).

1. Of course it is actually less than half their sum. If, however,
we should thereby attempt to sharpen the proof, we should find
formulae connecting € and & that would not guarantee the ful-
filling of (17) whenever € < |w0|.



o)) and (17) for 1/w,’
Insertion of these bounds into (23) then gives

But (21) gives an upper bound for (wlz—w 2

2 B C—-B 2 C C-B 2
- < 2 =228 > 27D
() ~wg) a c-a “20" a B-a “30 (24)
From (11),(12), and (24) it then follows that
2 2 2_ 2 B C- B B B-A Cc-B C C-A
- < 2 =2 = XTH
(g =) "+, "+ ‘”20{“ A c-al ¢ c—A:]1 30 [l+ B-A T B B-A (25)
2
Since A<B<C, it follows that [ ]1< [ ]2, so that
82,02, 2 2 2 CC-B  CC-A
(wl wo) +W, +w3<(w20+w30)[}+ ABat B B_A] (26)
Thus we have
2 2 2 2
(wl—wo) HW, "4 < e (27)
if
2 2 2
m20+m30 < § (28)
where
82 - 2y S o3, cea] T (2 (29)
. A B-A B B-A d
provided that
2 _BCB 2, ,CCB 2
® 2 A c-a ®0 " a B2 %0 (17)

With the very permissive assumption that 22< moz, the re-
lations (28) and (29) guarantee the fulfillment of the proviso
(17), so that the latter may be dropped as an explicit condition,.
To show this, note that if €2<w02, (28) and (29) lead to

2

(]
o

-A

cC-A

o]
y

= c
u; = (1+ + 5 B )(w20+w30) < Wy (30)



Then

cCc-B ,. 2, 2 2

A Boa (©ypt®30) < uy < @, (31)
But from A<B<C,

B C-B . C C-B

ACA _ABRA "’ (32)
so that

BCB 2 CC-B 2 2

aca ®o Tana®o % - (33)

which is (17). This proves the statement.
Then for arbitrarily small €, the Q—point will always re-
main inside a sphere of radius € < IwO\ with center (w,,0,0), if

it lies initially inside a like-centered sphere of radius

- cCCc-B , C C-A
6_E[1+A—+B~——-] (34)

Thus the free rotation about the axis of smallest moment of in-
ertia is Liapounov-stable. Note, however, that if A=B, so that
the C-axis is an axis of symmetry, & vanishes., Thus for a body
with an axis of symmetry, the proof of Liapounov stability fails
for rotation about any axis perpendicular to the axis of symmetry.

5. Free Rotation about lC

If the %-point is initially at (0,0,wo), it remains unchanged.
Suppose now that the initial point is changed to (wlo,wzo,wo).
Multiply (2) by C and subtract (3) from the result, to obtain

2 2 _BCB , 2 2
W)Wy 5 =% cop (@ap®y ) (35)
from which
2. 2 BCB 2
@) <@g + 7 ca D20 (36)



and
ACA 2
Wy < Wy5 + 5 eip M0 (37)

Next multiply (2) by A and subtract the result from (3), to find

2,2 _BB-A , 2_ 2
®g @3 = ¢ cma (P2 ®0) s (38)
where w3(0) = Wyq = WOy Then

c-a ©2 (39)
Insertion of (37) into (39) then shows that

B-A

2 2_BB-A 2 , A 2
@ <cca®otces %o (40)

o ~%3
As before, if W4 changes sign, it must go through the value zero, so

that if it does

2 BB-A 2  AB-A 2
©o < ¢ ca X0 te e “o0 (41)
Thus
2 _BB-A .2  AB-A 2
®y 2 cea ®0 e s P10 (42)

is a sufficient condition that w4 shall not change sign. Now by
(38)

2 2 _BB-A 2
“®y <% ca %20 (43)

D3 Py

Also, by inserting (37) into (38), we find

2 2 A C-A 2
- > - e =L
®3 7 % B C-B ©10 (44)
B B-A 2 AC-A 2
Thus ‘wo - \ is less than either of C oA ©y9 and § &R @0

so that it less than their sum. Accordingly



lag?-03% 1< B 80 @5 + 3 & @5 (45)
With use of
|0g -0,
log-w,| = 2—3— (46)
|wg+o, |

and imposition of the condition (42), which makes \w0+w3|>lwo‘

we have
2
2 2
2 (wy"-0;7)
- <
(wy-ws) ~3 (47)
0
Then (42),(45), and (47) yield
2 _BB-A 2 ,AB-A 2
(wy=03)™ < 5 &Za P20 * ¢ =B P10 (48)
Addition of (36), (37), and»(48) then gives
2. 2 2 2 B B-A , B C-B
01 "+ T+ (3=Wp) TS @y [“ cc-a’a c--zx,]3
2[. AB-a  Ac-a
0 [“c c-B T B c—xa]4 (49)
The condition A<B<C is not sufficient to tell whether [ ]3 or
[ ]4 is the larger. Wwe therefore rewrite (49) as
2. 2 _y2_ 2 2 2(BB-A , B C-B 2(A B-A , A C-A
) 74w, "+ (3= <‘“10'““20*"“’20(c ca T a c-A> +“’:Lo(c cB B C—B) (50)
. 2 2 2 2 . 2 2_.2
Then, since s < " and ® 9 < %" if wlo+w20<6 , we have
2 2 2 2
Wy "+, +(w3—wo) < e” , (51)
if
2 2 2
<
where
-1
2_2 BB-A ,6 BC-B k6 AB-A £ AC-A
7= [1+ ccatacatcecsets C—B:I (53)



Again, with the assumption €2<m02, the relations (52) and (53)

guarantee the fulfillment of the proviso (42), so that the lat-
ter may be dropped, as an independent requirement., To show this,

note that if e2<wo2,(52) and (53) lead to

_ BB-A ,BC-B . AB-A , AC-A 2 2.2 2
uss M+ o 6ea *acca T oo T B oop) (@0+0y0) <e <w,
(54)
Then
BB-A 2 AB-A 2 2
S— me——— _— s < -
cca®o oY uz < @, (55)

But this is simply (42), so that the statement is true. Then,
for arbitrarily small €, the Q—point will always remain inside
a sphere of radius €<\wo\ with center(0,0,wo), if it lies ini-

tially inside a like-centered sphere of radius

BB-A BC-B  AB-A A C-A
A= c = 2 A 208, 8578
E‘*’c c-atacate * B } (56)

Thus free rotation about the axis of largest moment of inertia
is Liapounov-stable.

6. Free Rotation about the Intermediate Axis lB

If the Q-point is initially at (O,wO,O), it remains unchanged.
If it is initially at (wlO'wO'wBO)' the motion is unstable. The
constancy of RZ and T, however, is not sufficient to demonstrate
this instability.

To see why, note that the constancy of RZ and T applies
for all values of the time t, including those values so close to
t=0 that mzxwo, mlmmlo, and wB%wSO. That is, any conclusion that
we can deduce from the constancy of L and T will have to hold
also for values of

2

N 82,02, 02 2 2
R'= (w2 wo) +wl " N Wy 554 (57)

which are arbitrarily small for arbitrarily small values of wlg
nd 2,
a 30

-10 —~



On the other hand, to show L-instability, we should have
to show that there exists a positive number that R(t) can ex-
ceed as t increases, no matter how small a value we choose for
a non-vanishing R(0). Clearly we cannot do so by using rela-
tions, such as the constancy of k2 and T, that are independent
of the time.

7. Necessary Conditions for L-Stability

If we could derive necessary conditions for L-stability from
the constancy of kz and T, we should simply have to deny them to
obtain sufficient conditions for L-instability. We have just seen,
however, that we cannot derive sufficient conditions for L-instability
from the constancy of gz and T. Therefore we cannot derive neces-
sary conditions for L-stability from the constancy of gz and T,

8. Applications
(a) Stability of Rotation about the 1AAxis
Let
aA/c=1l-m (58.1)
B/C =1 - n, (58.2)
Then from (34)
' -1
n n 2
2 2 -1 2 1 €
8¢ =e J,+(1nl nz) (l-ﬂl + 1—1’12) < 5 (59)

If we consider the case of a uniform oblate spheroid, for
which A=B<C, initially rotating about an axis lA perpendicular
to its axis of symmetry, then N, =N, and 6=0, We cannot then
prove stability of rotation,; the result is in agreement with our
knowledge that the rotation is unstable.

If we now consider the case of a uniform prolate spheroid,
for which A<B=C, initially rotating about its axis 1A of sym-
metry, then n2=0 and

_.11 -



Thus

1
N ml2+w22 2
Qo 2 2 (68)
1 W1 9+
For A=B, however, (50) gives
2 2 2 2
W) "4, < Z(mlo+w20) (69)

Insertion of (69) into (68) then shows that
a < aiff (70)

To estimate the effects of axial asymmetry of the Earth,
note that the theory of potential gives

1
B-3 2

4 [C- A+B]

2 2

-1 -3
= Jy7(Cy 518, ))

X 10 (71)

2

Here J2 is the coefficient of the second zonal harmonic in the
spherical harmonic expansion of the Earth's gravitational poten-

tial. 02 5 and 82 , are the coefficients of sectorial harmonic
tefms. Thus

B B-A . A B-A . -3
ceARNS TR R (A0 (72)
as compared with
BC-B . AC-2 .
Aca~BcB~ L (73)

so that by (50) axial asymmetry cannot change the factor 2 in (69)
or the factor /2 in (70) by more than a few percent, even if we
allow for some error in the estimate 10 > in (71).

If the Earth were truly a rigid body, rotating freely, the
angular deviation of its instantaneous polar axis from the nearby
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principal axis could then not increase from a given initial value
by more than the factor /2 X 1.4, A mere glance at the figure
for polar wandering on p.34 of Vol. 1, S.A.0. Special Report
200 (1966) shows that the actual polar motion is very different,
The polar wandering is clearly much greater than that which
could occur if the principal axis were fixed and the above
factor /2 were valid for the actual earth. The conclusions
of this paper are thus compatible with and reenforce the idea
that one must invoke non-rigidity to explain polar wandering.
The present paper had its origin in discussions with
Dr, S. J. Madden, Jr., who first thought of using Egs. (4)
through (6) to investigate stability of rotation. Dr. André'
Deprit also contributed some very helpful comments,

References

/
Deprit, A., and Deprit-Bartholome, A., 1967, Astron. J., 72,
173-179

MacMillan, W.D,, 1966, "Dynamics of Rigid Bodies", Dover
Publishing Co., New York, N.Y., p.211.

Pollard, H., 1966, "Mathematical Introduction to Celestial
Mechanics", Prentice-Hall, New York, N.Y., p.78.

Smithsonian Astrophysical Observatory, 1966, Special Report
200, vol. 1, p.34,.

~15 -



NOTATION

smallest principal moment of inertia
intermediate principal moment of inertia
largest principal moment of inertia

a sectorial coefficient in the spherical harmonic ex-
pansion of the Earth's gravitational potential

total angular momentum of rotation

coefficient of the second zonal harmonic of the
Earth's potential

kinetic energy of rotation

a sectorial coefficient in the expansion of the

. Earth's potential

abbreviation used only in (30) and (31)
abbreviation used only in (54) and (55)

angle between Earth's instantaneous axis of rotation
and the nearest principal axis

an initial value of a
a final value of a

an arbitrarily small radius in w-space
a small radius in w-space (6<e)
1-a/cC

1-B/C

angular velocity of rotation at time t

unit vectors along the principal axes
component of @ along 1A

component of w along lB

2

component of

@ (0)

value of wk(O), when considering stability of

eE

along lc

rotation about the k'th principal axis
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